<font color = red , size = '4'>下列图表转载自
链接:
题意:给出递推关系,求 f(k) % m 的值,
思路:
因为 k<2 * 10^9 , m < 10^5,O(n)算法应该是T掉了,当 k >= 10 时 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10),可以理解为这是两个行列是乘积的值,经下面分析可知用矩阵快速幂可搞
下列三个表分别命名为矩阵0,矩阵1,矩阵2。
fk | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
fk-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fk-10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
- 经过观察发现,当 k >= 10 时 f(k) = [ 矩阵1 ]^(k-9) * [ 矩阵2 ]
/************************************************************************* > File Name: hdu1757.cpp > Author: WArobot > Blog: http://www.cnblogs.com/WArobot/ > Created Time: 2017年05月02日 星期二 19时25分30秒 ************************************************************************/#includeusing namespace std;const int maxn = 11;int MOD;#define ll long long #define mod(x) ((x)%MOD)struct mat{ int m[maxn][maxn];}unit;int n;mat operator * (mat a,mat b){ mat ret; ll x; for(int i=0;i<10;i++){ for(int j=0;j<10;j++){ x = 0; for(int k=0;k<10;k++) x += mod( (ll)a.m[i][k]*b.m[k][j] ); ret.m[i][j] = mod(x); } } return ret;}// 初始化单位阵void init_unit(){ for(int i=0;i<10;i++) unit.m[i][i] = 1; return;}mat pow_mat(mat a,ll x){ mat ret = unit; while(x){ if(x&1) ret = ret*a; a = a*a; x >>= 1; } return ret;}int main(){ mat a , f; int aa[10]; ll k; init_unit(); memset(f.m,0,sizeof(f.m)); for(int i=0;i<10;i++) f.m[i][0] = 9-i; while(cin>>k>>MOD){ for(int i=0;i<10;i++) cin>>aa[i]; if(k<10) printf("%lld\n",k); else{ // 构建a矩阵 for(int j=0;j<10;j++) a.m[0][j] = aa[j]; for(int i=1;i<10;i++){ for(int j=0;j<10;j++){ if(j+1==i) a.m[i][j] = 1; else a.m[i][j] = 0; } } mat ans = pow_mat(a,k-9); ans = ans*f; printf("%d\n",ans.m[0][0]%MOD); } } return 0;}